论文极限思想在割圆术中的应用

论文极限思想在割圆术中的应用

问:割圆术是体现极限还是体现微元法
  1. 答:“微元法"就是先把一个所求的物理图形分割成无数个小块,进而将这些小块带入一定的公式计算,然后叠加起来,最后求出这个物理图形总量。割圆术符合这个方法,所以体现的是微元法。
问:论述古代的极限思想
  1. 答:刘徽的 “割圆术”在人类历史上首次将极限和无穷小分割引入数学证明。
    所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法。“圆,一中同长也”。意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。
    认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在(2019年)所熟悉的公式。
    为了证明这个公式,我国魏晋时期数学家刘徽于公元263年撰写《九章算术注》,在这一公式后面写了一篇1800余字的注记,这篇注记就是数学史上著名的“割圆术”。
    扩展资料
    刘徽把圆内接正多边形的周长一直算到了正3072边形,并由此而求得了圆周率 为3.1415和 3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面。
    以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于使圆周率精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”。
    其中 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。
  2. 答:我国魏晋时期的数学家刘徽在注释《九章算术》时创立了有名的“割圆术”,他创造性地将极限思想应用到数学领域。他设圆的半径为一尺,从圆内接正六边形开始,每次把边数加倍,用勾股定理算得圆内接正十二、二十四、四十八…边形的面积,内接正多边形的边数越多,内接多边形的面积就与圆面积越接近。
    正如刘徽所说:“割之弥细,所失弥少,割之又割,以至不可割,则与圆周合体,而无所失矣”这已经运用了极限论的思想来解决求圆周率的实际问题了,“以至不可割,则与圆周合体”,这一思想是墨家“不可分”思想的实际应用。
    扩展资料:
    极限思想的进一步发展是与微积分的建立紧密相联系的。16世纪的欧洲处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中大量的问题,只用初等数学的方法已无法解决,要求数学突破只研究常量的传统范围,而提供能够用以描述和研究运动、变化过程的新工具,这是促进极限发展、建立微积分的社会背景。
    极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从直线形认识曲线形,从量变认识质变,从近似认识精确。
  3. 答:刘徽的 “割圆术”在人类历史上首次将极限和无穷小分割引入数学证明。“割圆术“,以“圆内接正多边形的面积”,来无限逼近“圆面积”。刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。
问:利用圆的面积为何为 简述极限的思想。
  1. 答:极限概念是由于求某些实际问题的精确解答而产生的。例如,我国古代数学家刘徽(公元3世纪)利用圆内接正多边形来推算圆面积的方法——割圆术,就是极限思想在几何学上的应用。
    设有一圆,首先作内接正六边形,把它的面积记为A1;再作内接正十二边形,其面积记为A2;再作内接正二十四边形,其面积记为A3;循此下去,每次边数加倍,一般地把内接正6*2^(n-1)边形的面积记为An(n属于N)。这样,就得到一系列内接正多边形的面积:
    A1,A2,A3,.....An,........,
    它们构成一列有次序的数。当n越大,内接正多边形与圆的差别就越小,从而以An作为圆面积的近似值也越精确。但是无论n取得如何大,只要n取定了,An终究只是多边形的面积,而还不是圆的面积。因此,设想n无限增大(记为n->无穷,读作n趋于无穷大),即内接正多边形的边数无限增加,在这个过程中,内接正多边形无限接近于圆,同时An也无限接近于某一确定的数值,这个确定的数值就理解为圆的面积。这个确定的数值在数学上称为上面这列有次序的数(所谓数列)A1,A2,A3,.....An,........, 当n->无穷时的极限。在圆面积问题中我们看到,正是这个数列的极限才精确地表达了圆的面积。
论文极限思想在割圆术中的应用
下载Doc文档

猜你喜欢